
554 D I R E C T  D E T E R M I N A T I O N  O F  X - R A Y  P H A S E S  

References 

BRAGG, W. L. & PERUTZ, M. F. (1952). Proc. Roy. Soc. 
A213, 425-435. 

CASPAR, D. L. D. (1963). Advanc. Protein Chem. 18, 37-121. 
CRowrm~R, R. A. (1967). Acta Cryst. 22, 758-764. 
CRowrrmg, R. A. (1968). Ph. D. thesis, Univ. of Cam- 

bridge. 
CROWTt-mR, R. A. (1969). Acta Cryst. B25, 2571-2580. 
CROWrHER, R. A. & AMOS, L. A. (1971). J. Mol. Biol. 60, 

123-130. 
FINCH, J. T. & KLUG, A. (1971). Phil. Trans. B261, 211-219. 
FINCH, J. T., LEBERMAN, R., YU-SHANG, C. • KLUG, A. 

(1966). Nature, Lond. 212, 349-350. 
FRANKLIN, R. E. & HOLMES, K. C. (1958). Acta Cryst. 11, 

213-220. 
GILBERT, P. F. C. (1970). Ph. D. thesis, Univ. of Cam- 

bridge. 
JAMES, R. W. (1948). The Optical Principles of  the Diffraction 

of  X-rays. London: Bell. 

KLUG, A. & DURHAM, A. C. H. (1971). Cold Sprhzg Harbor 
Symposia on Quantitative Biology, Vol. XXXVI, pp. 
449-460. 

MAIN, P. (1967). Acta Cryst. 23, 50-54. 
MAIN, P. & ROSSMANN, M. G. (1966). Acta Cryst. 21, 67- 

72. 
MORSE, P. M. (1948). Vibration and Sound. New York: 

McGraw-Hill. 
PATTERSON, A. L. (1939). Phys. Rev. 56, 972-978. 
ROSSMANN, M. G. & BLOW, D. M. (1962). Acta Cryst. 15, 

24-31. 
ROSSMANN, M. G. & BLOW, D. M. (1963). Acta Cryst. 16, 

39-45. 
ROSSMANN, M. G. & BLOW, D. M. (1964). Acta Co'st. 17, 

1474-1475. 
TOLLIN, P. & ROSSNANN, M. G. (1966). Acta Cryst. 21, 

872-876. 
VAINSHTEIN, B. K. & KAYUSHINA, R. L. (1967). Soy. Phys. 

Crystallogr. 11, 468-474. 
WATSON, J. D. (1954). Biochim. Biophys. Acta, 13, 10-19. 

Acta Cryst. (1973). A29, 554 

A Lattice-Dynamical Interpretation of Molecular Rigid-Body Vibration Tensors 

BY C. SCHERINGER* 

Institut f i ir  Kristallographie der Universit~t, Karlsruhe, Germany (BRD ) 

(Received 6 March 1973; accepted 30 March 1973) 

The rigid-body motions of molecules in crystals are treated with the aid of lattice dynamics of molecular 
crystals. An equation is derived in which the rigid-body vibration tensors TLS are related to the 
dynamical matrices of the crystal. Then the components of TLS are explicitly given in lattice-dynamical 
terms. A procedure is developed with which the trace of S, which cannot be determined from diffrac- 
tion data, can be approximately determined. The principal motions of the rigid-body vibrations of 
molecules are discussed. Which types of coordinate systems can be used to give a physically meaning- 
ful description of the rigid-body motions is examined from a dynamical point of view. A 'dynamical' 
interpretation of the tensors TLS is given which consists in relating TLS to the intermolecular forces 
of the crystal and then comparing the intermolecular forces with the packing of the molecules in the 
crystal. The interpretation is illustrated with the structures of maleic anhydride and 5-chloro-l,4- 
naphthoquinone. 

1. Introduction 

Cruickshank (1956a) was the first to show how the 
external vibrations of  almost rigid molecules can be 
described by two tensors T and L which account for 
the translations and librations of the molecules respec- 
tively. However, Schomaker  & Trueblood (1968) 
showed that, in general, the rigid-body motions are 
fully accounted for only if  a ( translat ion-l ibrat ion) 
correlation tensor S with 9 components  is introduced. 
Only 8 of  these components  can be determined from 
diffraction data. Schomaker & Trueblood's  derivation 
was performed in geometrical and statistical terms, cf. 

* Present address: Fritz-Haber-Institut der Max-Planck- 
Gesellschaft, D-1000 Berlin 33, Faradayweg 4-6, Germany. 

also Johnson (1970). In connexion with their deriva- 
tion Schomaker & Trueblood discuss (geometrical) 
possibilities for the actual rigid-body motions. In the 
main these authors consider a model in which the 
molecule carries out six uncorrelated simple mot ions;  
three of them are screw motions about perpendicular  
non-intersecting axes, and three are pure translations. 
Although no claim is expressed ' . . .  that the ele- 
mentary motions so derived must have dynamic signi- 
ficance' (Johnson, 1970) the rigid-body motions de- 
scribed by the non-intersecting-axes model are related 
to the geometrical (and chemical) arrangement  of  the 
molecules in a given structure; cf. also the discussion of  
the rigid-body motions of the glycolic acid molecule as 
given by Ellison, Johnson & Levy (1971). This means  
that the screw motions about non-intersecting axes are 
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considered to exist in reality and thus to be 'dynami- 
cally' relevant. Hence this model is considered as 
describing more than just a geometrical possibility 
which may or may not be realized in nature. 

A further derivation of the S tensor, based on lattice- 
dynamical terms, was given by Pawley (1968). Pawley 
did not put forward a geometrical interpretation of the 
tensors TLS, and, in another context (Ahmed, 1970, 
pp. 250-251), expressed objections to the interpretation 
of TLS that was suggested by Schomaker & Trueblood 
(1968), and by Johnson (1970). 

In this paper we try to give an interpretation of the 
tensors TLS on the basis of lattice dynamics of mo- 
lecular crystals. For this purpose we derive the relation 
that exists between the vibration tensors TLS and 
either the dynamical matrices or the lattice frequencies 
and eigenvectors of the crystal. Since the dynamical 
matrices contain a summation over the various inter- 
molecular forces, a relation between the tensors TLS 
and the intermolecular forces is thus established, at 
least in principle. This lattice-dynamical approach to 
formulating the tensors TLS allows one to: (1) make a 
proper choice of the coordinate system which is used 
to describe the molecular motions (only those systems 
which are suitable for a dynamical formulation of the 
vibrational problem are suitable for describing 'what 
really happens in nature' [Johnson, cf. Ahmed (1970), 
pp. 250-251]); (2) find a condition which permits the 
determination of the trace of S, which cannot be found 
from diffraction data, to a sufficient approximation ; (3) 
derive the principal components of the rigid-body 
motions; (4) draw conclusions about the intermole- 
cular forces from the components of TLS and relate 
the 'average forces' to the packing of the molecules 
in the crystal. 

2. Mean-square-amplitude matrix and dynamical 
matrices of the crystal 

In this section we shall derive a relation between the 
mean-square-amplitude matrix and the dynamical 
matrices of a molecular crystal as has already been 
done for atomic crystals [Scheringer, 1972a, equations 
(10) and (15)]. In establishing the relation for atomic 
crystals we made use of the well known lattice-dynam- 
ical expression for the Debye-Waller factors. With 
molecular crystals an analogous derivation cannot be 
performed because there are no Debye-Waller factors 
for molecules, but only for the single atoms of a mol- 
ecule. A rigid molecule has six degrees of freedom 
(corresponding to three translations and three rota- 
tions) but by diffraction methods only the translations 
of the individual atoms of the molecule in three direc- 
tions can be determined. Since there is no direct way of 
determining to what extent the translations and rota- 
tions of the molecule contribute to the translations of 
the individual atoms, one is not able to determine the 
forms of the molecular vibrations directly. Hence, in 
order to derive the desired relation, we are forced to 

pursue a different approach to that which is possible 
for atomic crystals. 

In order to establish the dynamics of the molecular 
vibrations, we use the equations of motion for a mo- 
lecular crystal and then determine the relation between 
the quantities which occur in the equations of motion 
(energy, frequency and mass) and the mean-square 
amplitudes, which can be obtained with the aid of 
diffraction methods. 

First, we set up the secular equations for a molecular 
crystal, and for this purpose we need the dynamical 
matrices of the crystal and the kinetic-energy matrix. 
The equations are analogous to those obtained in the 
dynamics of atomic crystals, cf., e.g., Maradudin, 
Montroll & Weiss (1963); Cochran & Cowley (1967). 
We consider a crystal with n equal molecules in the 
unit cell and choose a Cartesian coordinate system for 
each molecule. Each system is fixed relative to each 
molecule. There are six vibrational coordinates for 
each molecule k , k =  1 . . .  n, which are referred to the 
equilibrium position of the molecule. We denote the 
three translation coordinates by ut(k), and the three 
rotational coordinates by 0(k) for the kth molecule. As 
an equivalent notation for the 6n vibrational coordi- 
nates we use column matrices y: then the elements y~ 
with i =  6 ( k -  1)+ 1,2, 3 denote the three translation co- 
ordinates, and i =  6 ( k -  1)+ 4, 5, 6 denote the three rota- 
tional coordinates. The indices l and l '  denote the cells 
in the crystal, and i t ,  qbij(kk,), i,j= 1 . . .  6, denote the inter- 
molecular force and couple constants, which can be 
derived from the interatomic force constants of the 
individual atoms in the molecules (lk) and (l'k'), cf. 
Cochran (1963), Powell (1969). Then the elements of 
the 6n × 6n dynamical matrix for the wave vector q are 
given by 

r , ~ , ) =  ~ '~' ~b,j(~k,) exp {iq. [r(lk)-r(l'k')]}, (2.1) 
I--l '  

where r(lk) denotes the vector to the origin of the mol- 
ecule (lk) in the crystal. The kinetic energy of the n 
molecules in a unit cell may be written as 

6n 

Ekin=½ ~, A,jPtPj, A,.i=Ajt, (2.2) 
i , j=  1 

where the 6n × 6n matrix A can be calculated from the 
total mass and the inertial moments of the molecules. 
Since the kinetic energy for the n molecules in the cell 
is the sum of n individual contributions, the matrix A 
is 6 x 6 block diagonal. Since we use the same type of 
coordinate system for the different molecules, each 
block of A has the same form. If the origin of the coor- 
dinate system is at the centre of gravity of the molecule, 
then the 6 x 6 block decomposes into two 3 x 3 blocks, 
one for the translations and one for the rotations. 
This does not, however, hold for an arbitrary origin, 
cf. Sch~ifer (1950), Higgs (1955). A concise expression 
for A can be obtained if the position of the centre of 
gravity, ~, in the molecular coordinate system is rep- 

A C 2 8 A  - 5* 
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resented by the antisymmetric tensor 

0 -Qz Qr ) 
V Q =  ez 0 - e x  • (2 .3)  

- Qr ~ox 0 

Let m be the total mass of one molecule, I be the iner- 
tial tensor referred to the centre of gravity, and E be 
the unit matrix, then from Higgs' equation (A9) one 
obtains* 

mVor 
A66 = (2.4) 

 mVo I+mVoV:  

for a 6 × 6 diagonal block of A. The secular equation 
for each wave vector q is now 

det [L(q)-  2j(q)A] = 0, (2.5) 

where 2j(q) represents one of the 6n possible solutions 
of equation (2.5). The solutions are the squares of the 
lattice frequencies coj(q). In order to calculate the 
2j(q) one usually transforms equation (2.5) so that the 
kinetic-energy matrix A is reduced to the unit matrix, 
i.e. 

GT"AG = E. (2.6) 

Similarly, the dynamical matrices L(q) are transformed, 
and the solutions 2j(q) are the eigenvalues of the trans- 
formed dynamical matrices. Often the transformation 
(2.6) is carried out in two steps: A is diagonalized with 
the aid of an orthogonal transformation P, and then 
the diagonalized matrix is reduced to E with the aid of 
a diagonal matrix Q, i.e. G =  PQ, cf. ,  e .g. ,  Smirnow 
(1964). Since A is 6 x 6 block diagonal, G, P and Q 
are also block diagonal. Whereas P merely describes 
the transformation to a new (six-dimensional) co- 
ordinate system, Q normalizes the masses and inertial 
moments to unity and at the same time normalizes the 
vibrational coordinates to unit-length coordinates. The 
mass-normalized dynamical matrix has the form 

M(q) = GTL(q)G, (2.7) 

and we can represent the solutions 2j(q) of equation 
(2.5) by a 6n x 6n diagonal matrix A according to 

M =  RAR., (2.8) 

for each wave vector q. M is Hermitian and R is 
unitary, i.e. R = R-  ~ (~  denotes the conjugate-complex 
transpose matrix, - l  the inverse), because the ele- 
ments Lij of the dynamical matrices are generally com- 
plex, cf. equation (2. I). 

In order to establish the relation between our equa- 
tions and the mean-square amplitudes of the molecules, 
it is now expedient to make use of a well known rela- 
tion, which holds, quite generally, for oscillators in 
thermal equilibrium. Let E be the mean energy, co the 
frequency of the oscillator, and u 2 the mean-square 

* The existence of  the off-diagonal  blocks m V  o was pointed 
out  to me by Dr  N. Brodherr ,  Mfinchen. 

amplitude referred to the unit mass, then 

£ =  co2u2, (2.9) 

cf. Bloch (1932), Born & Huang [1962, equation 
(16.17)]. In our problem E, co and u 2 each refer to a 
lattice mode q j ;  the explicit expression for £ has been 
given, e.g.  by Scheringer [1972a, equation (3)]. In 
order to be able to connect equation (2.9) with our 
equations, we first express it in matrix notation. Simi- 
larly to representing the 2 coj(q) by a diagonal matrix A 
we represent the energies E(qj) by a 6n x 6n diag- 
onal matrix F(q), and the elements uZ(qj) ,  which refer. 
to the contents of a unit cell, by a 6n x 6n diagonal 
matrix DA(q). Let N be the number of cells in the crys- 
tal; then we can write equation (2.9) as 

A-  X(q)F(q) = N DA(q). (2.10) 

In order to connect equations (2.10) and (2.8) we re- 
write equation (2.8) as 

M - I = R A - a R ,  (2.11) 

and observe that RA-aFP,=RA-aP-RFR, since R is 
unitary. Then we obtain from equations (2.10) and 
(2.11) 

M -  aRFR.= NRDAP,. (2.12) 

Since M -1, RFR, and RDaR. are usually Hermitean 
and not real it is expedient to use both the wave vectors 
q and - q  in setting up a real mean-square-amplitude 
matrix D. Then we obtain from equation (2.12). 

1 ( M _ a R F ~ + M . _ a R , F ~ , ) ,  (2.13) D ( q , - q ) =  m 

where the second term refers to the wave vector - q .  
D is real and symmetric and is mass-normalized, as is 
M. In order to express the mean-square amplitudes in 
our initial translation and librational coordinates we 
have to remove the mass normalization; i.e. we have 
to transform D corresponding to the transformation 
M --+ L. D transforms as M -1, and hence with equation 
(2.7) we obtain 

C(q, - q) = Gn(q, - q ) G  r (2.14) 

for the mean-square-amplitude matrix. C refers to the 
initial system of translation coordinates ut(k) and libra- 
tion coordinates 0(k). From equations (2.13) and (2.14) 
we now obtain 

1 (GM_IRF~GT + G M , _ I R . F ~ , G r ) .  C ( q , - q ) =  m 
(2.15) 

We insert the unit matrix GrG r-1 after M -1 and 
M*-a in equation (2.15) and define the matrix product 

{GT-~RFRGT}q = ~'~(q). (2.16) 

f~(q) has the dimension of energy. In the high-temper- 
ature approximation it reduces to 

f~(q)  = F(q )  = k B T E  , (2.17) 
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where kB is Boltzmann's constant and T is the absolute 
temperature, fl(q) is not Hermitian. In order to obtain 
the mean-square-amplitude matrix of the crystal, we 
have to sum over all wave vectors in the crystal. We 
insert £~(q) of equation (2.16) in equation (2.15), carry 
out the summation, and finally obtain 

1 
C =  ~ ~ L- l (q)~(q) .  (2.18) 

An alternative form of the mean-square-amplitude 
matrix C, in which C is related to the lattice frequencies 
and eigenvectors, may be useful in some cases. From 
equations (2.10), (2.12) and (2.15) we obtain 

1 ~ G{RA_IF~:}qGT" (2.19) C =  N 

In the Appendix we use equation (2.19) to prove that 
C has only positive eigenvalues. An application of 
equation (2.19), in the form of the mass-normalized 
matrix D = G-  1CGT-1, has already been given 
(Scheringer, 1972b), where the contributions of the inter- 
nal and external modes of molecules to the Debye-Wal- 
ler factors were analysed. 

Equation (2.18) is our desired result, in which the 
6n x 6n mean-square-amplitude matrix C is expressed 
in terms of the dynamical matrices of the crystal. Equa- 
tion (2.18), which refers to molecular crystals, is fully 
equivalent to equation (15) of Scheringer (1972a), 
which refers to atomic crystals. The derivation which 
we have given in this section can, of course, be per- 
formed in an analogous manner for atomic crystals, 
and thus will lead to the mean-square-amplitude ma- 
trix for an atomic crystal. However, this approach 
cannot be considered as a complete derivation of the 
Debye-Waller factors, since these contain not only the 
mean-square amplitudes of the individual atoms but 
also express the way in which the lattice spectra of a 
crystal are affected by the thermal motions of the 
atoms. 

3. Specification of the elements of the mean-square 
amplitude matrix C 

After having derived our basic relations (2.18) and 
(2.19) we have to show which elements of the mean- 
square-amplitude matrix C are to be identified with the 
components of the vibration tensors TLS. This identi- 
fication arises from our definition of the translation 
coordinates ut(k) and librational coordinates 0(k). 
The sequence of these coordinates for the n molecules 
in the unit cell determines the corresponding sequence 
of the elements in the dynamical matrices L(q) of equa- 
tion (2.1). The same sequence holds for the inverse 
dynamical matrices and hence, from equation (2.18), 
for the mean-square-amplitude matrix C. With the 
sequence ut(1), 0(1), ut(2), 0(2) , . . . ,n t(n) ,  0(n) of the 
vibrational coordinates, as used in § 2, we therefore 
find that the kth 6 × 6 diagonal block of C, which 
refers to the mean-square amplitudes of the kth tool- 

ecule, has the form* 

C66(kk) = /T I ST'~ (3.1) 
~S [ L l k "  

The 6 × 6 off-diagonal blocks C, C66(kk'), contain the 
coupling terms for the molecules k and k'. Although 
these terms are defined in terms of the dynamical ma- 
trices they cannot be determined by experiment. Only 
the tensors TLS and hence the diagonal blocks of C 
are subject to experimental investigation (except for 
the trace of S). An analogous result was already found 
to hold for the 3 × 3 blocks of the mean-square-am- 
plitude matrix of atomic crystals, cf. Scheringer (1972a). 

Next we consider the question of how we can re- 
present the components of TLS explicitly in terms of 
the lattice frequencies and eigenvectors. This we do 
with the aid of equations (3.1) and (2.19). Equation 
(2.19) contains not only the frequencies co(q) and the 
matrices R(q) of the eigenvectors, but also the trans- 
formation matrix G of equation (2.6). If the principal 
inertial system with the origin at the centre of gravity 
is used as reference system, G is diagonal and the 
components of TLS can be given explicitly. In any 
other system G is not diagonal. If one diagonalizes G 
in a system whose origin does not coincide with the 
centre of gravity, one obtains only linear combinations 
of the components of TLS. If one does not choose the 
centre of gravity as the molecular origin then the reduc- 
tion of the kinetic-energy matrix to the unit matrix 
usually leads to a system of eigenvectors whose base 
vectors do not coincide with the base vectors of the 
principal inertial systems of the n molecules. Before we 
express the components of TLS in terms of the lattice 
frequencies and eigenvectors we want to derive the 
transformation by which the two sets of base vectors 
are related to each other. 

Let ~ be the vector from the centre of gravity to the 
molecular origin, and let Lo(q) be the dynamical ma- 
trix. Then the mass normalization of the 6n vibrational 
coordinates Yo by means of the transformation matrix 
G = PQ of § 2 can be written as 

y"° 'm- Q -  1P- lye= Gb-~y o (3.2) p Q  - -  

Next we have to carry out the mass normalization so 
that it leads to normalized coordinates y~,l% m which 
refer to the principal inertial systems of the n molecules. 
We first rotate each Cartesian system so that its axes 
are parallel to the axes of the principal inertial system 
(transformation H,) ,  then shift the origins of the mo- 
lecular systems to the centres of gravity (transformation 
He), and finally normalize in the principal inertial 
systems (transformation Q ~ ) .  The total transforma- 
tion of the coordinates is 

y"-°rm = Q~s* H~,HByQ = G~s* y Q . (3.3) p l s  

* In this paper the symbol L is used for the dynamical ma- 
trix L(q) and also for the libration tensor. Confusion cannot 
arise, however, since the two symbols are never used together. 
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The t ransformat ion  matrices H8 and Ho will be speci- 
fied below, cf. equations (3.14) and (3.17). From equa- 
tions (3.2) and (3.3) we obtain for the t ransformat ion 
between the normalized coordinates 

n o r m  62-162 ,,norm (3.4) 
Y P O  = ~'JPQ ~'JpisJpls , 

and hence for the t ransformat ion  between the respec- 
tive base vector systems 

a e o  = (Gp~ Gp~s) T- ,ar,~. (3.5) 

Reference to a part icular  molecular origin is now 
redundant  since all normalized vibrational coordinates 
are expressed as translation coordinates. Finally, we 
show that  the t ransformat ions  (3.4) and (3.5) corre- 
spond to a rotation of  the 6n-dimensional coordinate 
system. We put GF~Gp,~=W -~ and show that W is 
orthogonal ,  i.e. W - ~ = W  r. F r o m  equation (3.4) we 
obtain for the t ransformat ion between the mass- 
normalized dynamical  matricesi" 

MpQ --~ W rMpi~W. (3.6) 

Since both sets of  coordinates,  ypon°~m and :P~,"n°rm, fulfil 
the normalizing condition (2.6), the respective mass- 
normalized dynamical  matrices, Mpo and Mp~ of  
equations (2.7) and (2.8), have the same eigenvalues 
2j(q). Thus Mpo and M ~  are similar and from equa- 
tion (3.6) we deduce w r = w  -1. 

We obtain the expressions for the components  of  
TLS in the principal inertial system with origin at the 
centre of  gravity by evaluating equation (2.19). G is 
diagonal and for each molecule it contains three times 
the inverse square roots of  the mass m of  the molecule 
and the inverse square roots of  the principal moments  
of  inertia, I~, i = 1 , 2 , 3 .  Let s = 6 ( k - 1 ) + t  with t =  
1 . . .  6, and let et(klqj) be the sth component  of  the 

j t h  eigenvector to the frequency coj(q) [the sth element 
of  the j t h  column of the unitary matrix R(q)] then, for 
the kth  molecule in the unit cell and i,e= 1,2,3 

1 6n E(qj)  

x[e~(klqj)e*(k]qj)+e'~(k[qj)e~(k[qj)], (3.7a) 

s e l ( k )  - 1 6n E(q j )  

2N[/~m~¢/ ~ j=,~" col(q) 

x [e, + 3(klqj)e*~ (k I q j )  + e~'+ 3(klqj)e~(klqj)]. (3.7c) 

In order to express the components  of TLS in any other  
coordinate system (with any origin) we have to take 
into account that  G is not diagonal. The simplest 
presentation in this case is obtained if one uses a 6 × 6 
matr ix representation instead of  the component  re- 
presentation (3.7). We express TLS in the matr ix C66 
of  equation (3.1), and we similarly express the products  
of  the components  of  the eigenvectors e~(klqj), 
et,(klqj), t, t ' =  1 . . .  6, which occur in equation (3.7), 
in a 6 x 6 matrix,  g66. Similarly, we only need a 6 x 6 
(diagonal) block of  G, G66. Then we can represent the 
relation between C66 and the mass-normalized mo- 
lecular mean-square-ampli tude matrix, D66 , by 

_ r ( 3 . 8 )  C66 - G66D66G66. 

Evaluation of  equation (2.19) leads to 

l g ( q j )  , 
866}qjG66 (3.9) C66 = 2 N  --coj(q)2 - -  G66{866 -~- 

for the given molecule.~ In the principal inertial system 
equation (3.9) reduces to equations (3.7). 

In order to show how the t ransformat ion laws for 
the tensors TLS can be obtained f rom our lattice- 
dynamical  formulat ion of  the mean-square-ampli tude 
matrix C, we define a general t ransformat ion 

YH = H -  ly (3.10) 

of  the 6n vibrational coordinates. With equation (3.10) 
the corresponding t ransformat ion 

C n = H - 1 C H  T-1 (3.11) 

for the mean-square-ampli tude matr ix holds. First we 
consider a change of  our three-dimensional basis in 
crystal space. We define the t ransformat ion of  the base 
vectors so that  we obtain 

utB = B T -  lut  ( 3 . 1 2 )  

1 6. £ ( q j )  

L,e(k)- 2Nl/-I~ie- ~ J=l ~ ~j(q)2 ...... 

×[e,+3(klqj)e*+3(klqj)+e*+3(klqj)e~+3(klqj)], (3.7b) 

t Spectroscopists often do not calculate the frequencies 
from the dynamical matrix M but rather from the product 
LA -~ ('FG-method'). LA -1 and M have the same eigenvalues 
since they are similar, for L A - ' = G r - ~ M G  r. Since G is not 
orthogonal a corresponding transformation for the vibration 
coordinates and base vectors is no longer defined [in contrast 
to equations (3.4), (3-5) and (3.6)]. Hence for LA -~ reference to 
a particular coordinate system is lost. Furthermore, LA -~ is 
not Hermitian. This means that the phase relations, which are 
contained in M, are no longer expressed in LA -~. For these 
reasons we consider a representation with the matrix product 
LA-~ unsuitable for the purpose of our analysis. 

Here we refer to a special point of a previous paper 
(Scheringer, 1972b), in which we discussed the contributions 
of the internal and external modes of molecules to the Debye- 
Waller factors. In that paper we showed how the contribu- 
tions of the external modes, C ext, can be calculated if the vi- 
bration tensors T L S are referred to the principal inertial 
system with origin at the centre of gravity. With the equations 
derived in this section we can give the expression for C cxt 
when the tensors T L S are referred to any coordinate system. 
With A66 defined by equation (2.4) and C66 by equation (3.1) 
we obtain 

C e~t = trace (C66A66) • 

The derivation is as follows. By definition of G~6 we obtain 
A66 = Gr~IG& 1, and with equation (3.8) we see that D66 = 
G& 1 C66 A66 G66. Hence D66 and C66 A66 have the same eigen- 
values; thus trace (D66) = trace (C66 A6o). Now, by definition 
C "Xt = trace (Do6), which establishes the above result. 
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for the translation coordinates ut(k) of the molecules. 
Then the libration coordinates transform according to 

0B = B0 sign (det B). (3.13) 

For a change of the three-dimensional basis the trans- 
formation matrix H is 6 x 6 block diagonal, and every 
6 x 6 block of H -  i has the form 

(B r-1 [0 
H ~ I =  (3.14) 

0 [B sign (det B)] " 

0 is the null matrix. We insert H ~  1 of (3.14) into equa- 
tion (3.11), multiply out all terms, and solve for the 
TLS terms. We obtain 

TB = B T- 1TB- 1, 
LB = BLB T, 
SB = BSB- ~ sign (det B). 

(3.15) 

Equations (3.15) state the transformation laws for the 
rigid-body parameters TLS and at the same time 
establish the tensor properties of TLS. (3.15) is in 
agreement with the assignment of tensorial indices as 
given by Burns, Ferrier & McMullan (1967). 

Next we show how the tensors TLS transform when 
the molecular origin is shifted by a vector ~. Let X, be 
the coordinates of the atoms in the old molecular 
system, X,o the coordinates in the new system, then 

X r o  = X r - ~ .  (3.16) 

Let the components of ~ be expressed as components 
of the antisymmetric tensor Vo of equation (2.3). Then 
a 6 × 6 diagonal block of the matrix H-1 has the form 

(E I Vor~ 
H ~ =  \-0~l ~ -  ] . (3.17) 

We insert H~  ~ of (3.17) into equation (3.11), multiply 
out all terms, solve for the TLS terms, and obtain 

T o = T + VoLVo r - VoS - (VoS) T, 

Lo = L, So = S + LV e. (3.18) 

Equations (3.18) are identical with results derived by 
Schomaker & Trueblood [1968, equations (10) and 
(11)]. 

Finally, we want to comment on how the relation be- 
tween the tensors TLS and the atomic vibration ten- 
sors can be gained from a lattice-dynamical approach. 
Pawley (1968) has derived this relation using the com- 
ponents of the eigenvectors of a molecular crystal. In 
our opinion two points have to be observed in this 
derivation. Pawley uses the symbols u~, 0t and v~, ~0i and 
states that they stand for the real and imaginary parts 
of the components of the eigenvectors. Strictly 
speaking, these symbols stand for the mass-normalized 
components of the eigenvectors (or linear combina- 
tions of them) since only these are directly related to the 
translation and rotational mean-square amplitudes, 

cf. equation (3.19) below. The second point is related 
to the first and refers to the coordinate system used. 
In Pawley's (1968) derivation of his equation (5) one 
has to assume that the components of TLS refer to the 
principal inertial system with origin at the centre of 
gravity. For only in this system does the mass normal- 
ization give rise to simple factors for the components 
of the eigenvectors, thus permitting the derivation 
given by Pawley. In any other coordinate system the 
components of TLS are not related to a simple product 
of mass-normalized components but rather to a linear 
combination of such products, which is determined by 
the matrix G66 , el. equation (3.9). The restriction of 
Pawley's derivation to the principal inertial system with 
origin at the centre of gravity does not, however, im- 
pair the validity of Pawley's result in any coordinate 
system, because the invariance of Pawley's equation 
(5) is ensured by the form of the transformation laws 
(3.15) and (3.18). In order to connect our equations to 
Pawley's we thus have to take the mass normalization 
into account and we also have to refer to the principal 
inertial system. We then obtain with equations (3.7) 

e,(k l qj)o~(qj)/V'-m=u, + iv~ (Pawley), 
(3.19) 

e, + 3(k l q j )o~(qj) /~=O,  + i~ot (Pawley), 

where ~(qj) = E(qj)/Nco~(q). The ~(qj) are constant fac- 
tors for the components of the eigenvectors (for this 
reason they are omitted by Pawley) and account for 
the fact that the lengths of the eigenvectors are norm- 
alized to unity. 

4. The trace of S 

As shown by Schomaker & Trueblood (1968) the trace 
of S cannot be determined from diffraction data since 
only the differences S[-S~,  enter into the calculation. 
Hence only 8 of the 9 components S~ can be deter- 
mined experimentally. The fact that the trace of S 
cannot be determined is to be considered as a deficiency 
in our experimental methods and does not imply that 
the rigid-body motions of molecules can be adequately 
described with 8 components S~. According to equa- 
tion (2.18) all 9 components S~ are uniquely deter- 
mined by the dynamical matrices L(q) and the matrices 
~(q), and hence have fixed values for a given structure. 
This may also be illustrated in the following way: the 
trace of S could also be determined with the aid of the 
coupling tensors U,~ from atomic crystals, c f  equation 
(4.4) of Scheringer (1972c). But the coupling tensors 
are also only defined in terms of the dynamical ma- 
trices and cannot be determined by experiment either. 

For our interpretation of TLS we need to know the 
trace of S, at least approximately. In the refinement of 
the components S[ an a[bitrary condition is usually 
imposed on the trace of S. The most obvious one, 
which was also proposed by Schomaker & Trueblood, 
is 

trace (S) = 0. (4.1 
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This condition is meaningful in that it usually keeps the 
magnitudes of the components S~ smaller than the 
magnitudes of the components Tu and Lu. But, in 
general, we may not expect that the condition (4.1) 
corresponds exactly to equation (2.18). We denote the 
components S~ of equation (4.1) by S~(0), and those of 
equation (2.18) by S~(dyn). Since the difference S ~ -  S~ 
can be determined uniquely, only a constant K is un- 
known. We write 

S I (dyn)=SI (0 )+K;  i=  1,2,3. (4.2) 

With equations (4.1) and (4.2) we have trace [S(dyn)] = 
3K. 

Schomaker & Trueblood (1968) remarked that 
limits for the trace of S can be derived using Schwarz's 
inequality, and they obtain 

Itrace (S)I < ]/trace (T) trace (L).  (4.3) 

Somewhat narrower limits can be obtained if one 
applies Schwarz's inequality to the components T",  
Lu, and S~; one then obtains 

K, im= - S I _+ ]/"TSiLil; i =  1,2,3. (4.4) 

The conditions (4.4) also follow from the condition 
that the respective 2 × 2 principal minors are positive; 
their zero values yield the limits Kl~m of equation (4.4). 
Thus even narrower limits can be obtained if one 
postulates that all eigenvalues of the TLS matrix C66 
are positive, i.e. 

/],j{C66 } ~ 0; j =  1 . . .  6. (4.5) 

The equal sign gives the limits for K. Equation (4.5) 
can be used numerically by varying the value of K and 
examining the signs of the eigenvalues. In practice all 
three conditions (4.3), (4.4) and (4.5) are not strong 
enough to determine the value of K with sufficient 
accuracy. 

Hence we shall try to estimate the value of K from 
equations (2.1) and (2.18). Constraints on the elements 
of L follow from constraints which are valid for the 
intermolecular force constants. In order to derive 
them let us write the 6 × 6  intermolecular-force- 
constant matrix, referring to molecules (~) and (~;) in 
the crystal, as 

,z, ( 9, [9~o~] (4.6) 9o6(kk') = , 
9co , ,  [ 9 ,o ,  I 

where the subscripts t, rot, and corr refer to translation, 
rotation and correlation respectively. Now we have to 
express 956 in terms of interatomic force constants. 
This was done by Hahn & Biem (1963), and by Powell 
(1969). Here we give a matrix representation which 
makes the structure of the terms more obvious. For 
this 15urpose we choose a fixed Cartesian coordinate 
system for all atoms and molecules and write the 
interhtomic force constants as 3 × 3 matrices z z, ~(k,~,~,),  
~hefe r and r '  denote the respective atoms. Let the 
~'arttesian coordinates of the atoms, referred to the 
orig!n of the molecule, be contained in the antisymme- 

tric tensor 

Then 

0 - z ,  Y,) 
v,= z, 0 - x ,  . (4.7) 

-Y, x, 0 

9,(~:) = ~ 9~,~;,), (4.8a) 
rY* 

i t '  9~ot(kk,) = ~ XZ ,Z,,,,Z z' ~vr tz'~ (4.8b) V r ~ k ~  ~lS , k r k ' r '  I - - r  ' k k ' ]  , 
rY* 

9 1  [ l l ' ~  oo,,.,,,,., = ~ q,',~2;,)v T (~:), (4.8~) 
rr* 

2 tzz'~_ V ~z,_,z z' , (4.8d) 
¢ o r r ~ k k ' ] -  ~ .  r ~ k , ~ , k r k ' r ' J "  

I't'" 

The summations only refer to atoms r and r '  which 
belong to the molecules lk and l ' k '  respectively. Equa- 
tions (4.8) hold only for the case lk ¢ l 'k ' .  The 'self terms', 
lk = l 'k ' ,  have essentially the same structure and can be 
derived from the invariance conditions of the force 
constants when the crystal undergoes rigid translations 
and rotations, cf. Hahn & Biem (1963), Powell (1969). 
In the rigid-molecule approximation we assume infi- 
nitely large forces between atoms of the same molecule; 
i.e. all 9arkZr,) are infinitely large for r:~r ' .  In practice 
we eliminate these terms by putting them equal to zero. 
(This means that we do not calculate internal frequen- 
cies of the molecule.) From the symmetry condition of 
the interatomic force constants [Maradudin, Montroll 
& Weiss, 1963, equation (2.1.9)] we obtain the corre- 
sponding condition 

11' ~ T z ' l ' l ~  966(kk') = (4.9) ~l~66kk'k/ 

for molecular crystals. In particular, we obtain 

1 zzz'~_,~2'r tz'z~ (4.10a) 
c .orr~kk ' l  - -  Yc ,  o r r \ k ' k ! ,  

2 ( l l "~  jm lT  ,~Z' Z~ (4.10b) eorr~,kk'J ~-- Y e o r r ~ k ' k l  • 

So far we have used a fixed Cartesian coordinate 
system. Now we have to investigate how the structure 
of equations (4.8) is altered if we refer to the various 
molecular coordinate systems. Let us express the trans- 
formation into the molecular systems by equations 
(3.10) and (3.12), where the rotation of coordinate 
axes is described by the 3 × 3 matrix B (BT= B-l) .  We 
then obtain for all 3 × 3 force-constant matrices 9rr, 
9,, 9~ot and 9~o~r the same law of transformation, 
namely 

98(~; )  = Bg(~ ; )  B ' r .  

B and B' refer to the molecules k and k'. This law im- 
plies that, for k ¢ k ' ,  the structure of equations (4.8) is 
destroyed, since the molecules k and k' are usually 
differently oriented in the crystal, and hence B # B ' .  
For k = k '  we have B =B '  and the structure of equations 
(4.8) remains unaltered. It also remains unaltered if 
the origin of the molecular system is shifted because 
only the values of the components Xr, Y~, Z, of equa- 
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tion (4.7) are altered. The force-constant matrices ~66 
(k = k') are on the diagonal of the 6n x 6n intermolec- 
ular-force-constant matrix which refers to molecules in 
the cells l and l'. Only the diagonal blocks ~66 ( k  = k t) 

are important in what follows. 
In order to benefit from equations (4.8) we now have 

to make the following assumption. The potential 
energy of the crystal is the sum of contributions from 
atom pairs r, r '  and these contributions depend only on 
the distance between the atoms r and r'. This assump- 
tion does not appear to be very stringent and is usually 
made in lattice-dynamical calculations with the use of 
'6-exp' potential functions, cf. Harada & Shima- 
nouchi (1966, 1967), Pawley (1967), Powell (1969). 
With this assumption the interatomic-force-constant 
matrices become symmetric, 

ll' T ll" ~( , , , )=9  (,,,), (4.11) 

cf. Maradudin, Montroll & Weiss [1963, equation 
(2.1.20)].* With equation (4.11) we obtain for each term 

[q~(krk,r,)Vr,(~,)] =0,  and the r, r' of equation (4.8c) trace ~ z, r ~, 
corresponding result for the terms r,r' of equation 
(4.8d). Thus we obtain the important result 

t r ace  (t]~clorr) : trace 2 (gcorr)=0 (4.12) 

for the diagonal blocks, k = k ' ,  of the 6n x 6n force- 
constant matrix. Equation (4.12) is valid in any coor- 
dinate system, as discussed above. 

Since the dynamical matrices L(q) are sums of force- 
constant matrices, each term being multiplied by a 
phase factor, of. equation (2.1), a relation corre- 
sponding to (4.12) also holds for the dynamical ma- 
trices. Let L66 be a 6 x 6 diagonal block of L(q), then 
we obtain from (4.6) and (4.12) 

{L66}1,4 + {L66}2,5 + {L66}3,6-~ 0, (4.13) 
for each wave vector q. In order to make use of equa- 
tion (4.13) we now introduce the high-temperature 
approximation of equation (2.18) 

C -  k~T 
N ~ L-l(q)  " (4.14) 

q 

Equations (4.13) and (4.14) form the basis of our 
estimation of the constant K. Generally we cannot 
expect that a corresponding relation holds for the 6 x 6 
diagonal blocks of L-~(q) because such a relation will 
be destroyed by the matrix inversion. In order to ob- 
tain a condition for K we now assume that the change 
in the sum of the elements 1 ,4+2,5+3,6  of L66(q), 
which occurs during the inversion L ~ L - i ,  is largely 
compensated for if we invert the sum of the inverse 
matrices; i.e. we assume that the sum of the elements 
1 ,4+2 ,5+3 ,6  in [~L-~(q)] -1 is approximately zero. 
Since we know only the diagonal blocks C66 o f  C, we 
can carry out the inversion only with these blocks. 

* von Laue (1960) seems to assume that equation (4.11) 
holds without restrictions, el, his equation (21.17¢). 

With the above assumptions we thus obtain 

{C/;1}1,4 + {C;;1}z.5 + {C;;'}a.6 = 0. (4.15) 

Equation (4.15) can only be used numerically. 
The following consideration seems to indicate that 

the constant K will generally not be zero but will re- 
main small. Let the sum of the three elements 1,4+ 
2,5+3,6 in each diagonal block of L- l (q)  be f(q). 
With equation (4.13) we generally expect f(q) to be 
non-zero. Hence, in the high-temperature approxima- 
tion, 

knT 
trace [S(dyn)]-  N ~ f ( q )  

q 

will usually be non-zero. But we may expect that the 
~f(q)  remains small in magnitude because the single 
terms f(q) may have different signs and thus tend to 
cancel each other to a large extent. 

The value of trace [S(dyn)]=3K is invariant with 
respect to the chosen coordinate system. From equa- 
tion (3.15) we see that trace (S) is invariant with respect 
to changes of axes [as long as inversion is excluded, 
whereby trace (S) changes its sign], and from equation 
(3.18) we see that trace (S) is invariant with respect to 
a shift of the molecular origin. The invariance of trace (S) 
corresponds to the invariance of our result (4.12) which 
refers to the corresponding three elements in the 6 x 6 
mtermolecular-force-constant matrices. 

In view of the assumptions made in deriving equa- 
tion (4.15) it is obvious that the value of K cannot be 
determined very accurately. The assumed symmetry of 
the interatomic-force-constant matrices (4.11) and the 
high-temperature approximation (4.14) for T= 19°C 
do not appear to be very stringent. Also the block- 
diagonal inversion of C does not seem to give rise to 
serious errors. However, we should point out that 
equation (4.15) does not strictly follow from equations 
(4.13) and (4.14) but represents the most probable 
consequence which we can derive from (4.13) and 
(4.14). We have examined this with some numerical 
calculations using 6 x 6 matrices. It turned out that 
equation (4.15) does not strictly hold; but on the 
average over all examples the right-hand side of equa- 
tion (4.15) approaches zero. Thus we consider (4.15) 
to be the best possible condition that we can obtain in 
order to determine the constant K. The error limits for 
K seemed to be K = 0  on the one side, and 2K on the 
other. These limits will probably be larger if the value 
of K is very small compared to the magnitude of the 
components SI. 

5. Principal motions 

In order to derive the 'principal components'  of the 
rigid-body motions as they are to be understood 
dynamically, we follow the standard procedures for 
multidimensional oscillators. These procedures have 
already been discussed in {} 2, but now we have to 
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apply them to the mean-square-amplitude matrix C66 
of the given molecule. 

The first step is the mass normalization of C66 , and 
from equation (3.8) we obtain 

-1 T--I D66 = G66 C66G66 (5.1) 

D66 refers to the system of eigenvectors which is ob- 
tained by the specific form of the transformation ma- 
trix G66 which reduces the kinetic-energy matrix A66 
to the unit matrix, cf § 3. Only if the mass normaliza- 
tion has been performed is it meaningful to rotate the 
six-dimensional coordinate system in order to obtain 
the principal components. The rotation is described 
with the aid of the 6 x 6 orthogonal matrix R66, i.e. 
RT6 = R~ 1. R66 diagonalizes D66 , and the principal com- 
ponents DA~, j =  1 . . .  6, are given by 

DA66 = R~'6D66R66. (5.2) 

If one reduces A66 to unit masses then the elements of 
D66 and the principal components are obtained in 
squared unit lengths, where the unit length is given by 
1A/m. If one reduces A66 to mE (instead of E) the 
elements of D66 and the principal components are ob- 
tained in •2. This difference in dimension will become 
important for our interpretation of TLS, of. § 7 below. 
The principal components represent linear combina- 
tions of translations and librations of the molecules, 
which generally cannot be visualized geometrically in 
three-dimensional space. Only if the correlation tensor 
S vanishes in the principal inertial system with origin 
at the centre of gravity, are D66 and R66 3 × 3 block 
diagonal, the principal components representing pure 
translations and pure librations. Only in this case can 
the elements of the two 3 × 3 blocks of R66 be inter- 
preted as direction cosines (with respect to the prin- 
cipal inertial system). [If S is zero in a system whose 
origin is not at the centre of gravity, then S will usually 
not be zero if referred to the centre of gravity as origin, 
because of the transformation (3.18).] The uncertainty 
in the trace of S usually does not affect the values of 
the principal components to a large extent, since, as a 
rule, the components S~ are small compared to the 
components T u and Lu and so contribute only slightly 
to the principal components. 

It is instructive to discuss the determination of the 
principal components in terms of the eigenvectors of 
the lattice modes. Then we can interpret the determina- 
tion of the principal components as a transformation 
of a second-rank tensor into its system of principal 
axes. With equations (3.9), (5.1), and (5.2) we obtain 

1 E(qj) 
DA66=-2/W ._~ ~0~(~-R6T6{~66-1-~6*6}qjR66" (5.3) 

The components of the eigenvectors, which are con- 
tained in e66, are referred to the six-dimensional basis 
which has been obtained with the transformation 
matrix G66. This basis is orthonormal since all vibra- 
tion coordinates are expressed in the same units, cfi 
§ 3. Thus, for each mode q j, ~;66 '{- e6"6 is a real symmetric 

tensor of second rank. The expression R6T6{g66 "1- g6*6}qjR66 
in equation (5.3) can hence be interpreted as a tensor 
transformation with which the axes are rotated in six- 
dimensional space so that the tensor ~66 + ~6"6 becomes 
diagonal on the average over all lattice modes. The 
corresponding transformations of the base vectors and 
the components of the eigenvectors are 

aa =RTa, ea =RTe (5.4) 

respectively. (a, aa and e, ea are 6 × 1 column matrices.) 
q-he set of base vectors a.t expresses the principal axes 
of the tensor ~66 "1-~6"6 (lattice average). 

The total contribution of the mode qj  to the mean- 
square amplitudes of the kth molecule is equal to 

E(qj) 
trace[e66(qj)]= E(q j )  ~.le,(klqj)12. (5.5) 

Nco3(~i)- Nog~(q) t : ,  

Thus this contribution is proportional to the square 
of the length (in six-dimensional space) of that part of 
the eigenvector that specifies the motions of the kth 
molecule in this mode. Obviously the square of this 
length in (5.5) is independent of the six-dimensional 
orthonormal basis selected. 

The determination of the principal components 
described above is analogous to the determination of 
tile principal components of the atomic vibrations. For 
the individual atoms, however, the 3 × 3 kinetic-energy 
matrix is already diagonal in any Cartesian coordinate 
system, namely A33=mrE. Hence the transformation 
with the matrix G is redundant. Therefore it is suf- 
ficient to diagonalize the vibration tensors U, in a 
Cartesian coordinate system in order to determine the 
principal components. The rotation of the Cartesian 
axes corresponds to the transformation Rr(~+~*)R 
(all matrices are of order 3 × 3). The principal compo- 
nents of the atomic vibrations can be visualized geo- 
metrically in the principal Cartesian system, whereas the 
principal components of the molecular motions cannot, 
since they formally refer to a six-dimensional basis 
which cannot, in general, be resolved into two three- 
dimensional bases. 

6. Comments on Schomaker & Trueblood's 
interpretation of TLS 

In 1968 Schomaker & Trueblood were the first to 
deduce the correlation tensor S, and at the same time 
they gave a detailed interpretation of the tensors TLS. 
They found that, by introducing the S tensor, the three 
positional parameters of the centre of libration, which 
were introduced by Pawley (1963) and by Hirshfeld, 
Sandier & Schmidt (1963), became redundant. Hence 
the origin of the centre of libration was found to 
constitute an arbitrary element in the TLS description, 
and Schomaker & Trueblood proceeded to find a 
description in which this arbitrary element was re- 
moved. They achieved this by transforming the tensors 
TLS so that as many components as possible would 
become zero. There are several ways of doing this; in 
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the description preferred by Schomaker & Trueblood, 
the tensor L is diagonalized, the three axes of the prin- 
cipal system of L are shifted so that S becomes di- 
agonal, and finally T is referred to its own principal 
system. Hence only 9 components remain non-zero 
(3Lu, 3S~, 3TU), and the description obtained is 
unique in that reference to a particular molecular 
origin is no longer necessary. 

However, Schomaker & Trueblood (1968) state that 
this set of components corresponds to 'six independent- 
ly distributed instantaneous motions' (or 'six inde- 
pendent simple motions'); these are 'three screw libra- 
tions about non-intersecting axes and three transla- 
tions'. With the use of physical terms of this type 
Schomaker & Trueblood associate a certain physical 
reality with the description that was originally designed 
to remove some arbitrary elements. This poses the 
following question: are the physical statements, which 
are associated with the preferred description, 'true' in 
the sense that they express what really happens in 
nature? If this question can be answered positively then 
the physical statements made by Schomaker & True- 
blood should, at least, not be in contradiction to the 
results of a different physical approach to the problem, 
or (even better) they should be confirmed by such an 
approach. 

To examine the physical statements made by Scho- 
maker & Trueblood from the point of view of the 
lattice-dynamical treatment which we have developed 
in this paper, we divide the problem into three ques- 
tions. 

(a) Are the six simple motions described by 
Schomaker & Trueblood statistically independent mo- 
tions of the rigid molecule? 

(b) Is it physically meaningful to regard certain vi- 
brations of the molecule as 'screw motions' when the 
diagonal components of the S tensor are non-zero? 

(c) Is a description of the molecular rigid-body 
motions with the aid of a system of non-intersecting 
axes physically reasonable? 

(a) 'Independent simple motions' 
Schomaker & Trueblood (1968, p. 67) derive these 

concepts in the following way. They first establish the 
system o f ' . . ,  non-intersecting axes, each used for one 
of the principal directions of libration and chosen to 
eliminate the off-diagonal part of S. The diagonal 
components of S are then accounted for by regarding 
the eigenvalues of L as representing independent rota- 
tions, each with a screw component. Finally, T is 
appropriately reduced to keep U invariant and is 
referred to its own principal axes. The picture is thus 
one of six independent simple motions.' 

We believe that the transformations of the tensors 
TLS described by Schomaker & Trueblood do not 
yield a set of components which describe six statisti- 
cally independent motions. Since the components SI 
remain non-zero the vibrations obtained by diag- 
onalizing L and S always contain the correlation be- 

tween translations and librations. We believe that it is 
not legitimate to interpret the components S~ only in 
relation to the components Lu and to treat the transla- 
tions separately. Such a procedure implies that the 
translations would form an independent set of motions 
and would not be affected by the components S~. Thus, 
as long as the components S~ remain non-zero, the 
respective set of TLS components does not represent a 
set of statistically independent motions. These are 
obtained only if the 6 x 6 mean-square-amplitude ma- 
trix of TLS is transformed so that the S~ (and all other 
off-diagonal terms of the 6 x 6 matrix) become zero. 
The results of such a (linear) transformation are always 
six linear combinations of translations and librations. 
Formally, there is an infinite number of sets of such 
linear combinations depending on the type of six- 
dimensional basis chosen. The only set which appears 
to be physically meaningful is the set of principal 
components which is obtained with the choice of an 
orthonormal basis for the eigenvectors, cf. § 5. The six 
principal motions, however, have the disadvantage 
that they cannot be visualized in simple geometrical 
terms and in this sense we cannot give them the attri- 
bute 'simple.' 

(b) Screw motions 
The components S~ represent the time and lattice 

averages of the coupling of the translations along the 
axis i with the librations about the same axis. We share 
Schomaker & Trueblood's (1968) opinion that transla- 
tions which are coupled with rotations about the same 
axis, can be visualized as (partial) screw motions of the 
molecule, and we wish to establish this view with the 
aid of a lattice-dynamical study. But we do not mean 
that the screw motions are the 'simple motions' about 
non-intersecting axes, cf the preceding section. With 
a single pair of lattice modes qj  and - q j  we show how 
the components SI are related to the phase differences 
of translations and rotations, and how the screw 
character of the motions can be understood in terms of 
the phase differences. The generalization for all lattice 
modes follows immediately. 

We use the principal inertial system with the origin 
at the centre of gravity because in this system the com- 
ponents of TLS are directly related to the eigenvectors, 
cf equations (3.7). For the modes qj  and - qj  we define 
a correlation coefficient 

t u-?-- (6 .1a)  {s,/v7 
which expresses the coupling of translations and rota- 
tions about the axis i. Its extreme values are + 1 and 
- 1 .  To express/h in terms of the phase difference of 
translation and rotation in the modes qj  and - q  j, we 
introduce phase angles 0 in the (complex) components 
et(klqj) of the eigenvectors. For the mode q j, let 
a exp (i~01) be a component of the eigenvector which 
refers to the translation of the molecule in the direction 
i, and let b exp (i~0z) be a component which refers to a 
rotation about the axis i, then the phase difference of 
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translation and rotation in this mode is ~01-~02. If  one 
calculates Pi of  equation (6.1a) with the aid of equa- 
tions (3.7) most factors cancel each other. For the two 
lattice modes q j  and - q j  we obtain 

l q (q j ,  - q j )  -- cos ((p~ - ~02), (6. lb) 

and thus we have expressed the correlation coefficient 
in terms of the phase difference between translation and 
rotation. The modes q j  and - q j  have the same fre- 
quency. Therefore we can discuss the 'partial  screw 
motions '  with the aid of equation (6.1b). Consider the 
extreme cases of m a x i m u m  correlation, IL~= _+ l, and 
of zero correlation, p~ = 0. For p~ = 1 we have qh - ~02 = 
0 °, and thus complete in-phase motion of translation 
and rotation occurs. Therefore it~= 1 means pure 
screw motion about the axis i. For p ~ = -  1 we have 
qh - ~02 = 180 ° and complete out-of-phase motion, there- 
fore p, = - 1 also means pure screw motion, but in the 
opposite sense. For pi = 0 we have ~0~- ~2 = 90°. Hence 
during translation in one direction (half  a period) rota- 
tion occurs half  the time in one sense and half  the time 
in the opposite sense. In those cases which lie between 
these extremes, 0 <  I/q[ < 1, rotation in one sense do- 
minates during translation in one direction but will be 
partially compensated by rotation in the opposite 
sense. Thus a certain part of  the screw motion remains 
for [Pil > O. 

In a similar manner  we can define the correlation 
coefficient for all lattice modes in the crystal, thus 

l*, = S~/I" T "  L , ,  . (6.2) 

This average value of correlation corresponds to an 
average of phase differences between translations and 
rotations, taken over all modes. For the individual 
modes the phase differences may vary; they may be 
smaller or larger than 90 ° , which corresponds to posi- 
tive or negative senses of the partial screw motions. On 
the average over all modes the senses of the various 
screw motions will frequently cancel each other, but a 
certain part  may remain. This part is expressed by pi 
of  equation (6.2). For the translation component  of 
the average screw motion we obtain 

i . , , l / T " =  S I/I/LII - y,, (6.3) 

and for the rotation component  

I J , l ~  = S ~/[,'T" - 6, .  (6.4) 

Equation (6.3) for the translation component  is equal 
to Schomaker & Trueblood's  (1968) result. 

So far we have used the principal inertial system. 
Our results are also valid in any other coordinate 
system with intersecting axes (with a defined origin) 
because the physical motions remain the same whereas 
the tensor t ransformations (3.15) and (3.18) ensure 
that we have only used another (valid) description of 
these motions (which is less suited for treating our 
problem). 

To conc lude : i f  the components  S~ are non-zero then 
there are lattice modes with which the molecules under- 

go partial screw motions, and we need not carry out 
a lattice-dynamical calculation in order to confirm this 
[Pawley, c f  Ahmed  (1970), pp. 250-251]. The results 
of  refinements of many structures have shown, how- 
ever, that the components  S~ are usually small in 
magnitude, and values of IPil>0"2 rarely occur, of. 
§ 8 below. For this reason it will seldom be possible to 
relate the observed screw components  to the packing 
of the molecules in a given structure. Such an at tempt 
will be rendered even more difficult by the fact that the 
constant K and hence the values of the components  S~ 
are not precisely known. 

(c) N o n - i n t e r s e c t i n g  a x e s  
The system of non-intersecting axes was originally 

introduced by Schomaker & Trueblood (1968) in 
order to discuss the six 'simple motions '  of  the mol- 
ecule. If one does not consider this part icular point  of  
interpretation the question remains whether or not it is 
physically meaningful  to describe the rigid-body mo- 
tions in a system of non-intersecting axes. The position 
of the non-intersecting axes with respect to the geom- 
etry of the molecule was calculated for several struc- 
tures [cf., e .g. ,  Serf & Trueblood (1968); Goldstein,  
Serf & Trueblood (1968); Palenik, Donohue  & 
Trueblood (1968); Long, Maddox & Trueblood (1969); 
Ellison, Johnson & Levy (1971)], and in some cases an 
attempt was made to relate the position of the displaced 
axes to some structural features. We do not consider 
such attempts appropriate because we believe that 
conclusions about motions 'which really happen in 
nature' ,  can only be drawn in a coordinate system 
which, in principle, allows a dynamical  (i.e. a physical 
in contrast to a geometrical) formulation of  the mo- 
tions of the molecules. 

A dynamical  treatment of the vibrational problem 
demands that positional and vibrational  coordinates 
are all expressed in one and the same coordinate 
system. This, however, is not possible in a system with 
non-intersecting axes. In such a system the vibrational  
coordinates can be expressed whereas the positional 
ones cannot since an origin of the molecular system is 
not defined. This has the consequence that neither the 
potential nor the kinetic energy can be represented. In 
order to show this we use the description used in this 
paper. But this does not imply a restriction on our 
results since our description is convertible into any 
other. 

Since no origin is defined (in a system with non- 
intersecting axes) the position of an atom r in the mol- 
ecule cannot be described by a tensor Vr of equation 
(4.7). Hence the intermolecular correlation and couple 
constants can no longer be expressed as in equations 
(4.8). But our problem demands that such a descrip- 
tion be possible. 

In the expression A66 of equation (2.4) for the 
kinetic-energy matrix of a molecule, we have seen that 
cross terms for translation and rotation always exist 
unless all three coordinate axes pass through the centre 
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of gravity. These cross terms contain the components 
of the vector ~ from the molecular origin to the centre 
of gravity. With a system of non-intersecting axes only 
one axis can pass through the centre of gravity; hence 
there are cross terms for the two remaining axes. Let 
the z axis pass through the centre of gravity; then a 
cross term -mQz exists, where ]Qzl represents the dis- 
tance of the x and y axes from the centre of gravity. 
Since the x and y axes do not intersect they have no 
common distance from the centre of gravity. Hence 
the component Qz is not defined, nor is the matrix 
A66. 

In the dynamical theory of rigid-body motions an 
attempt to use a system with non-intersecting axes does 
not appear to be necessary because the most general 
motion of a rigid body can always be described by 
translations, and by rotations about a fixed point, of. 
Sch~ifer (1950). 

7. Interpretation of TLS 

We have seen that no geometrical interpretation of the 
six principal motions can be given (for S ¢ 0) because 
the principal motions represent linear combinations of 
the translations along and librations about all coor- 
dinate axes. Hence, in general, it will be impossible to 
interpret the principal motions with respect to the 
arrangement of the molecules in a given structure. But 
it is, of course, always possible to calculate TLS in any 
(Cartesian) coordinate system and to try to relate the 
corresponding translations, rotations, and screw mo- 
tions to the packing of the molecules. Then the inter- 
pretation of the coupling terms in the mean-square- 
amplitude matrix C66 usually presents a difficult 
problem which we shall not attempt to solve. 

Our interpretation consists of firstly reformulating 
the mean-square-amplitude data TLS into intermo- 
lecular-force data, and secondly of relating the force 
data to the packing of the molecules in the structure. 
The interpretation in terms of intermolecular forces 
rather than in terms of mean-square amplitudes offers 
several advantages. It allows the question of normal- 
ization to be tackled in a more rational manner and so 
facilitates the (numerical) comparison of translations 
and rotations. Also the question of a suitable coor- 
dinate system can be more clearly handled. Finally, it is 
a matter of convenience, to rediscuss the dynamically 
important intermolecular interactions in terms of 
(average) intermolecular forces rather than in terms of 
mean-square amplitudes. 

Our basic equation is (2.18), but first we consider 
the simpler case of the high-temperature approxima- 
tion (4.14). In (4.14) the summation is carried out over 
the inverse dynamical matrices. The dynamical ma- 
trices contain sums over the intermolecular-force- 
constant matrices, where each term is multiplied by a 
phase factor which depends on the wave vector q, 
of. equation (2.1). Thus in the dynamical matrices the 
force constants for the various intermolecular contacts 

are added. This means that the dynamical matrix L(q) 
describes the resultant intermolecular forces for the 
wave q, and hence describes the resultant force field in 
which the molecules in a unit cell vibrate in the wave q. 
The average motions of the molecules are obtained by 
adding up the mean-square amplitudes of the molecules 
(and not the dynamical matrices), as is stated by equa- 
tion (4.14). This way of forming the average seems to be 
reasonable since the molecules vibrate independently 
in the various modes (in the harmonic approximation). 
In order to describe the average motions of the mol- 
ecules in terms of a force field rather than in terms of 
mean-square amplitudes we invert the matrices in 
equation (4.14) and define a 6n x 6n matrix F as follows 

k ~ T C - I = N [  ~ L-I (q ) ] -~=F .  (7.1) 
q 

The elements of F have the dimensions of force, couple 
and of (translation-rotation) correlation constants 
respectively. We call F a 'pseudo-force-constant ma- 
trix' since the elements of F are not intermolecular- 
force constants as given by equations (4.8). F may be 
interpreted as follows. The molecules in the unit cell 
vibrate as if  they were in a force field with the force- 
constant matrix F; or alternatively, a force field de- 
scribed by the matrix F would produce exactly the 
same mean-square amplitudes as the molecules actu- 
ally have in the crystal. 

Unfortunately, we cannot calculate F from equation 
(7.1) because we can only determine the diagonal 
blocks of C which are occupied by the tensors TLS. 
Hence we have to make a further assumption which 
goes beyond the rigid-molecule assumption and the 
harmonic approximation used so far. We have to 
assume that C is 6 x 6 block diagonal. This assumption 
means 'uncorrelated motion'  for the molecules in the 
unit cell, cf. Scheringer (1972c). Generally, it will not 
hold exactly for molecular crystals, but it will be fairly 
well fulfilled because in most molecular crystals only 
weak van der Waals forces occur which are inde- 
pendent of direction. If the assumption is valid, C and 
F are block diagonal and we obtain in the high- 
temperature approximation 

F66 = kB TC~61, (7.2) 

which allows us to calculate F immediately from the 
vibration tensors TLS. 

At room temperature the high-temperature approxi- 
mations (7.1) and (7.2) are usually adequate for mo- 
lecular crystals. But we want to show here how the 
matrix F66 can be calculated from the components of 
TLS at low temperatures. For this purpose we write 

F66= ~"~66C~1 = N~~66[ ~ L-l(q)~(q)]  -1, (7.3) 
q 

again assuming C to be 6 × 6 block diagonal. In equa- 
tion (7.3) F66 and ~66 are unknown, but ~66 is defined 
analogously to ~(q)  of equation (2.16), i.e. ~66 = 
(G66R66)T-IF66(G66R66) T. F66 can be evaluated by 
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numerical procedures. One uses the diagonal form 
Fa66=(G66R66)TF66G66R66 whose elements FAj are the 
squares of the pseudo frequencies co j, j =  1 . . .  6. These 
frequencies can be determined from the principal com- 
ponents Daj of equation (5.2) with the aid of the equa- 
tion 

h coth ~ hcoj Daj (7.4) 
2cojm \ ~ 7  ~ ] " 

With equation (7.4) the normalization is performed to 
the mass m, with the aid of G66. F66 is now obtained 
according to F66 = (G66R66) T -  IFA66(G66R66 ) -  t, where 
R66 is determined from equation (5.2). 

Equations (7.2) and (7.3) describe the relation be- 
tween the tensors TLS and the pseudo force and 
couple constants, but, similarly to T and L, the 
force and couple constants do not have the same 
dimension. The pseudo force constants for the transla- 
tions have the dimension of energy/A 2, and the pseudo 
couple constants for the librations have the dimension 
of energy. Hence the values of all elements in F66 can- 
not be compared with one another, and, consequently, 
one has to express the couple constants as force con- 
stants, or, equally, the rotations of the molecule as 
translations. This is achieved by the mass-normalizing 
transformation. However, a further point has to be 
observed. If one wants to obtain the pseudo force 
constants on an absolute scale, i.e. in energy/,/k 2 units, 
one has to normalize to the mass m of the molecule 
and not to the mass one, cf  § 5. This is important if 
one wants to compare the pseudo force constants or 
different molecules, which usually have different 
masses. Thus, with the mass-normalizing transforma- 
tion 

G6T6A66666 = mE (7.5) 

the normalized pseudo-force-constant matrix 
F n o r m  T 66 = G66F66G66 (7.6) 

is obtained, and all of its elements have the dimensions 
energy/A 2. If the molecular origin is placed at the 
centre of gravity x66117n°rm refers to the principal inertial 
system for the translations as well as for the librations. 
If, however, the molecular origin is not at the centre of 
gravity and the mass normalization is carried out with a 
matrix G66=P66Q66 as described in § 2, then A.661~'n°rm 
refers to a six-dimensional orthonormal basis, cf. § 3. 
In this case the elements of rr,orm 166 cannot be interpreted 
in three-dimensional space of the actual structure since 
the six-dimensional basis cannot, in general, be re- 
solved into two three-dimensional bases. Thus, for our 
interpretation, it is not only advantageous but neces- 
sary to use the centre of gravity as the molecular origin. 

It is our aim to relate the values of the elements of  
Fnorm of equation (7.6) to the packing of the molecules 66 
in the static structure. There are usually two proper- 
ties of molecular crystals which make this possible. 

(1) Molecules usually have a low symmetry (in con- 
trast to atoms). The shape of the molecules largely 

determines the possible intermolecular interactions 
(contacts). Hence F66 is usually strongly influenced by 
the low symmetry of the molecular shape and will thus 
display a pronounced anisotropy. This facilitates 
relating the elements of ~7,orm Jr66 t o  characteristic features 
of the structure. 

(2) The important intermolecular forces usually 
occur only between adjacent molecules (nearest and 
next-nearest neighbours). This could be well confirmed 
by lattice-dynamical calculations with the aid of '6- 
exp' potential functions and by comparison with 
corresponding experimental data on some structures. 
We draw attention to the following investigations (MI 
stands for the range of molecular interactions which 
was used to obtain a good fit to the experimental re- 
sults or, at least, to stabilize the calculation of the 
lattice frequencies): benzene and naphthalene, MI 
(H. • • H and C . . .  H) 3.3 A, calculations only for q = 0, 
comparison with infrared and Raman data, Harada & 
Shimanouchi (1966, 1967); naphthalene and anthra- 
cene, MI 5.5 A, calculations for all wave vectors, com- 
parison with infrared and Raman data, Debye-Waller 
factors (TL), elastic constants, Pawley (1967); hexa- 
methylenetetramine, MI 3.87 A, calculations for all 
wave vectors, comparison with inelastic neutron 
scattering, Powell (1969); chrysene, MI not stated, cal- 
culations for all wave vectors, comparison with thermal 
diffuse scattering, Hogan & McMullan (1972). The 
fact that, with molecular crystals, only interactions 
among adjacent molecules occur (to a good approx- 
imation) means that the pseudo-force-constant matrix 
contains only interactions of this type. 

The interpretation of the mean-square amplitudes in 
terms of the pseudo force constants, which we have 
outlined for molecular crystals, could formally be 
c~,rried out for atomic crystals as well. In particular, 
the low-temperature equivalent to (7.1), reduced to a 
3n x 3n atomic pseudo-force-constant matrix, provides 
a correct description for atomic crystals. However, a 
corresponding interpretation usually cannot be applied 
successfully since the inherent assumptions do not hold 
for atomic crystals. For ionic crystals and metals the 
assumption of uncorrelated motion may be nearly 
fulfilled, but the interatomic interactions are usually 
not restricted to adjacent atoms, as could be shown 
in many cases by comparison between observed and 
calculated dispersion curves, cf., e.g., Cochran & 
Cowley (1967). Furthermore, in ionic crystals and metals 
the atomic motions are often not markedly aniso- 
tropic, even in cases where this would be allowed by 
low site symmetry, In covalent crystals, on the other 
hand, the interactions are usually of the short-range 
type and anisotropic motions may easily occur when 
the atoms are strongly bound in certain directions. 
But then the assumption of uncorrelated motion is 
not appropriate and the diagonal block F33, which is 
obtained merely from the vibration tensor of the re- 
spective atom, does not represent the elements of the 
proper pseudo-force-constant matrix. 
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We see that the interpretation of TLS described above 
is possible mainly because the interatomic interactions 
in molecular crystals are of a distinct type (uncorrelated 
motion, molecular shape, short-range interactions) 
which usually cannot be found in atomic crystals. 

f,~=i ~. ~; ,~:  8.  I n t e r p r e t a t i o n  o f  t w o  s t r u c t u r e s  

(a) Details of  programs 
In order to be able to apply the treatment discussed 

in the preceding sections we have written two pro- 
grams. With the first program scale factors, positional 
parameters of the individual atoms, and the param- 
eters TLS (or alternatively the parameters TLX, X 
denoting the origin for the molecular librations) can 
be refined from diffraction data, whereby TLS (and 
TLX) are referred to crystal axes. During the refinement 
the condition trace (S )=0  is imposed, which reduces 
the order of the matrix of the normal equations by 
one. 

With the second program the coordinates of the 
atoms and the parameters TLS are first transformed 
into a Cartesian reference system and then into the 
principal inertial system of the molecule with origin at 
the centre of gravity. The constant Kis determined from 
equation (4.15) by a cyclic interpolation procedure. 
The various limits of K are calculated from equations 
(4.3), (4.4) and (4.5). The following quantities are also 
calculated: the principal components of equation (5.2), 
the screw components of equations (6.2), (6.3) and 
(6.4), and the pseudo force constants of equations (7.2) 
and (7.6) for T=292°K.  

(b) Values of  the constant K 
The two structures selected are maleic anhydride 

(MAL) and 5-chloro-l,4-naphthoquinone (5C1N). The 
respective values for K were computed to be -0 .00026 
and -0.00052 rad A, cf. Table 1. The uncertainty for 
these values is about + 0.00030 rad A. It is interesting 
to compare the values of K, determined from equation 
(4.15), with the central values between the limits of K, 
cf. Table 1. K(II) is the central value between the 
narrowest limits that follow from equations (4.4); 
K(III) is the central value which is obtained from the 
singularities of C66 , equation (4.5). K(II) is negative 
for MAL and 5CIN, as is K. But for MAL K(I I )=  
-0.000293 rad A deviates strongly from the value of 
K, whereas for 5CIN K ( I I ) = - 0 . 0 0 0 8 7  rad A comes 
much closer. The central values K(III) of the narrower 

limits (4.5) are, however, in good agreement with the 
value of K, particularly for 5C1N. This agreement 
seems to indicate that the values of K are determined to 
a fair approximation from equation (4.15). Moreover, 
the values for the limits of K show that these are not 
narrow enough to determine the value of K with suf- 
ficient accuracy. The narrowing of the limits due to the 
use of equation (4.5) instead of equation (4.4) is slight 
for MAL but considerable for 5CIN, cf. Table 1. 

For MAL the value of K ( -  0-00026 rad A) is small 
compared to the values of the components SI (average 
0.00210 rad A). Therefore the use of K = 0  would lead 
to essentially the same values for the screw components 
and pseudo force constants. For 5CIN, however, the 
value of K ( -0 .00052 rad A) is significant compared 
to the values of the components S~ (average 0.00126 
rad A), and the use of K =  0 would lead to markedly 
different values for the screw components, whereas 
the values for the pseudo force constants would hardly 
be affected. 

(c) Maleic anhydride 
The structure of MAL was determined by Marsh, 

Ubell & Wilcox (1962) (MUW). Refinements of 
thermal rigid-body parameters TLX were carried out 
by Pawley (1963). The space group is P21212~, with one 
molecule in the asymmetric unit. MAL is essentially 
planar. The planes of different molecules in the crys- 
tal are not parallel to one another, which results in a 
loose packing of the molecules, cf. Figs. 3, 4, 5 of 
MUW. All intermolecular contacts are of the van der 
Waals type. The molecules are arranged in zigzag 
chains. 

We have refined MAL from the M UW diffraction 
data by using the rigid-body thermal parameters TLS 
and TLX. With TLX we confirm Pawley's (1963) re- 
suits. The S tensor proved to be highly significant 
compared to the origin parameters X. The two respec- 
tive R values were 6.36 and 6.77 % so that the param- 
eters X could be rejected below the 0.005 level of 
significance. The R value of 6.36% for TLS is even 
smaller then that reported by MUW (6.5%). The 
parameters TLS [trace (S)=0] referred to the princi- 
pal inertial system with the origin at the centre of 
gravity, the total mass of the molecule, the principal 
inertial moments, and the principal components Da~ 
are given in Table 2. Since the molecule is essentially 
planar two principal axes are located in the plane of 
the molecule; their position is indicated in Fig. 1. 

Table 1. Values of  the constant K and its limits (rad A) for M A L  and 5CIN 
K is determined from equation (4.15). Kxim(I) refers to equation (4-3), K.m(II) to equation (4.4), K.m(III) to equation (4.5). K(I), 

K(II), and K(III) are the respective central values between the limits. 

MAL 5C1N MAL 5C1N 
K - 0"00026 - 0"00052 K~m(I) +_ 0"02628 +__ 0"01012 
K(I) 0"0 0"0 K+m(II) 0"01961 0"00494 
K (lI) -- 0"00293 - 0-00087 K ;i.,(II) -- 0-02547 -- 0-00669 
K(III) -- 0-00047 -- 0.00050 K ~m(III) 0"01941 0"00229 

K/i,.(III) - 0"02035 -- 0"00330 



Table  2. Parameters T L S  [trace ( S ) =  0] referred to the 
principal inertial system with origin at the centre of  

gravity, for  MA L and 5 CIN 

T 'k in A 2, L~k in rad z, S~' in rad A. m is the mass of the molecule 
in mole, I~ are the principal moments of inertia in mole A z. 
DA~ are the principal components of the rigid-body motions in 

MAL 5CIN MAL 5CIN 
T 11 0 " 0 4 8 5 7  0"01598 S~ -0"00097 0"00102 
T z-' 0"05642 0"03537 5~ 0"00110 -0"00302 
Z 33 0 " 0 6 8 7 8  0"03373 St -0"00277 -0"00278 
T lz 0"0061 i 0"01001 $3 z 0 " 0 0 2 6 3  0"00152 
T 13 --0"00046 -0"00680 S 3 --0"00213 -0"00189 
T zs -- 0"00709 0"00573 m 98-06 192"60 
Lll 0 " 0 1 0 6 3  0.00212 It 273-87 1187"97 
Lzz 0"01239 0"00258 12 200" 77 747"01 
L33 0 " 0 1 2 7 7  0"00615 ls 73"17 443"69 
Llz 0 " 0 0 1 0 7  0"00022 D,tl 0 " 0 7 2 7  0"0417 
Z t 3  - 0"00113 -- 0"00058 DA,_ 0 " 0 5 8 5  0"0367 
L23 - 0"00027 0"00257 DA3 0 " 0 4 5 7  0"0222 
SI 0"00310 0"00087 D,t~ 0 " 0 2 8 5  0"0128 
S z 0"00222 -0"00143 DA5 0 " 0 2 3 8  0"0058 
S~ 0"00287 - 0"00047 DA6 0 " 0 0 9 1  0"0032 
S~ 0-00220 - 0"00032 

The  corre la t ion  coefficients, ¢t~ of  equa t ion  (6.2), the 
screw t rans la t ions  Yi of  equa t ion  (6.3), and  the screw 
ro ta t ions  fii of  equa t ion  (6.4) are given in Table  3. 
The magni tudes  of  the cor re la t ion  coefficients are 
small,  all of  t hem less than  0.13. For  this  reason and  
because of  the uncer ta in ty  in the value of  K, we have 
not  t r ied to relate the screw c o m p o n e n t s  to the geo- 
metr ical  a r r angemen t  of  the molecules  in the crystal .  

Table  3. Correlation coefficients Pi, screw translations 
7i (A), and screw rotations ~ (rad) ( i =  1,2, 3)for M A L  

and 5 CIN 

~ Z 

MAL 5C1N MAL 5CIN 
pt 0-125 0.061 ys -0.0212 -0-0308 
/z2 - 0"046 0"052 31 0-0129 0"0028 
/~3 --0"081 -0"168 fiz -0-0052 0"0026 
Yx 0-0276 0"0077 fi3 -0"0091 -0"0132 
Yz -- 0"0110 0"0097 

Our  m a i n  concern is the in te rpre ta t ion  of  the mo- 
lecular  mot ions  of  M A L  in terms of  the pseudo force 
constants .  We  have used the h igh- t empera tu re  approxi-  
m a t i o n  and  found  it conven ien t  to express the con-  
s tants  in uni ts  of  A -2 as c o m p u t e d  f rom the equa t ion  

D;;1 (A-z)-~'.o,m/t- 7" (8.1) 
- -  .L66 I ~ B - ~ .  

The d iagonal  c o m p o n e n t s  of  L have  s imilar  magn i tudes  
r ang ing  f rom 34-9 to 41.9 deg 2. W h e n  the c o m p o n e n t s  
are normal ized  to the mass  m of  the molecule  they are 
m a r k e d l y  different (0-0297, 0.0254, 0.0095 A 2) be- 
cause the inert ial  m o m e n t  abou t  the Z axis is par t ic-  
ular ly  small  (73.17 mole  A2). This  demands  tha t  the  
respective pseudo force cons tan ts  also d isplay  pro-  
nounced  differences, cf. Table  4. 

One  interes t ing result  for M A L  is tha t  the pseudo-  
force-cons tan t  mat r ix  is d iagonal  to a fair approx ima-  
t ion ;  the off-diagonal  terms are rarely larger t han  
10% of  the co r re spond ing  d iagonal  elements.  This  
means  tha t  the t rans la t ions  in the direct ion of  and  the 
ro ta t ions  abou t  the pr inc ipal  inert ial  axes are, to a 
fair  app rox ima t ion ,  the pr incipal  mot ions  of  the mol-  
ecule. This  was also observed to ho ld  for n a p h t h a l e n e  
(Cru ickshank ,  1957a) and  an th racene  (Cru ickshank ,  
1956, 1957b), but  it does not  represent  a general  
p h e n o m e n o n ,  cf. 5C1N below. 

Since for M A L  the off-diagonal  e lements  o f  the 
pseudo- force-cons tan t  mat r ix  are small  we restr ict  
the  fol lowing discussion to the d iagonal  elements.  The  
d iagonal  e lements  which refer to ro ta t ions  are all 
larger  than  those which refer to t rans la t ions  of  the 
molecule.  The  largest  e lement  refers to the ro ta t ions  
abou t  the Z axis (108.9 A - l ) ,  the smallest  one to the 
t rans la t ions  in the direct ion of  the Z axis (15.0 A-2). 
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Y 

Fig. 1. Position of principal inertial axes in the molecule of 
maleic anhydride. The positive X axis points upwards from 
the molecular plane. CG =centre of gravity. 

Tab le  4. Normalized pseudo-force-constant matrices F~grm/kBT= D~61 (]k-2) for  M A L  and 5CIN 

The high-temperature approximation with T=292°K has been used. 

21.6 -2 .4  
18-7 

symmetric 

MAL 5C1N 
0.3 -2 .7  -2 .5  5.5 120.2 -43.9 35.9 -6 .7  -9-4 56.4 
1.9 -2 .7  1.7 - 5.0 46.4 - 19.3 10.3 -2 .3  -22.8 

15.0 - 2.5 - 0.5 2.4 45.2 - 3.0 20.7 13.8 
35.4 - 3.2 5.3 86.8 - 33.2 27.0 

40.2 - 0.3 symmetric 201.3 - 111-6 
108.9 159-4 
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Thus the translations are less hindered than the rota- 
tions of the molecule. Moreover, vibrations which take 
place in the plane of the molecule are less hindered and 
require smaller forces (translations in the Y and Z 
directions, rotations about the X axis, with pseudo 
force constants of 18.7, 15.0 and 35.4 A-z  respectively). 
The greatest forces are required for the rotation about 
the Z axis. This may, perhaps, be ascribed to the fact 
that the molecules are arranged in zigzag chains where 
they may possibly be 'connected' to one another to 
some extent. 

(d) 5-Chloro-l,4-naphthoquinone 
This structure is described by Scheringer (1973). The 

space group is P2db, with one molecule in the asymme- 
tric unit. 5C1N is essentially planar. The molecules are 
packed parallel to one another, the mean perpendicular 
interplanar distance being 3-51 A. All intermolecular 
contacts are of the van der Waals type. The arrange- 
ment of the molecules in the crystal is shown in Figs. 
2 and 3 of Scheringer (1973). The normal to the mo- 
lecular planes is inclined by 26 ° to a. In the a direction 
the crystals grow as needles. 

With 5CIN the S tensor also proved to be highly 
significant compared to the origin parameters X. The 
corresponding refinement yielded R values of 8.45 and 
9.04 % respectively so that the parameters X could be 
rejected below the 0.005 level of significance. The 
numerical data for the description of the rigid-body 
thermal motions are listed in Tables 2, 3, and 4. Two 
of the principal axes, referred to the centre of gravity, 
are located in the plane of the molecule; their position 
is indicated in Fig. 2. 

The magnitudes of the correlation coefficients/z~ are 
all smaller than 0.17, cf. Table 3, and thus we have 
not tried to relate the resulting screw translations and 
rotations to the geometrical arrangement of the mol- 
ecules in the crystal. 

For 5C1N La3 is particularly large (20.2 deg2), but/3 
2 is particularly small (443.69 mole A ) because the Z 

/, / " - .  
°ll21 

Fig. 2. Position of principal inertial axes in the molecule of 
5-chloro-l,4-napthoquinone. The positive X axis points up- 
wards from the molecular plane. CG =centre of gravity. 

axis is close to the chlorine atom, cf. Fig. 2. Hence the 
mass-normalized components L ,  are rather similar. 
The pseudo force constants are computed in the high- 
temperature approximation, cf. Table 4. As for MAL, 
for 5C1N the diagonal pseudo force constants re- 
ferring to rotations are, with one exception, larger than 
those referring to translations. But for 5CIN the 
pseudo-force-constant matrix is not even approx- 
imately diagonal. The pseudo force constants for the 
translations in the plane of the molecule are the smallest 
ones (46.4 and 45.2 A-z). The constants, which refer 
to vibrations which would loosen the packing of the 
molecules (translations along the X axis, librations 
about the Y and Z axes), are much larger (120.2, 
201.3, and 159.4 A -z respectively); these motions are 
hindered most. The large values of the pseudo force 
constants are in agreement with the following struc- 
tural features. 

(1) In the X direction the molecules are packed 
parallel, with the short perpendicular interplanar dis- 
tance of 3.51 A, 

(2) In the a direction the crystals grow as needles. 
Considering the off-diagonal terms of the pseudo- 
force-constant matrix we see that the translations are 
coupled to each other as well as the rotations. However 
the motions of the molecule cannot be separated into 
translations and rotations as is shown by the large 
coupling constant of 56.4 A -z for the translations along 
the X axis and the rotations about the Z axis. Thus the 
principal motions of the molecule cannot be attributed 
to any of the motions with respect to a principal iner- 
tial axis. The pseudo force constants for the principal 
motions are 24.0, 27-3, 45.1, 78.2, 171.4, and 313-3 A -2 
respectively. Obviously the librations about the Y and 
Z axes contribute mainly to the principal motions 
with the two largest constants. Thus, to a rough approxi- 
mation, the six principal motions of the molecule consist 
of two librations, which loosen the stacks of the mole- 
cules perpendicular to the molecular plane, of two trans- 
lations within the plane of the molecule, and of two 
mixed translation-rotational types of motions, which 
cannot be specified with respect to the geometrical 
arrangement of the molecules in the structure. 

(e) Comparison of MAL and 5CIN 
For both MAL and 5C1N the pseudo force con- 

stants for the translations are smaller than those for the 
librations. This seems to be a fairly general phen- 
omenon in molecular crystals, at least for non-spheri- 
cal molecules, cf. Scheringer (1972d). Also Davydov 
(1962, p. 12) states that the translation frequencies in a 
crystal are usually smaller than the rotational ones. 
The reason probably is that the molecules almost ex- 
clusively execute translations in the low-frequency 
acoustic modes, in which the molecules largely vibrate 
in phase thus employing the intermolecular forces only 
to a minor extent [cf., e.g., Pawley's (1967) dispersion 
curves for naphthalene and anthracene]. 

For 5CIN the diagonal pseudo force constants are 

A C 2.8A- 6 
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markedly larger than those for MAL. In particular, the 
constant referring to the translations along the X axis 
(perpendicular to the molecular planes) is even larger 
(120-2 A -2) than the largest rotational pseudo force 
constant of MAL (108.9 A-2);  and the largest constant 
referring to a principal motion of the 5CIN molecule 
(313.3 A -2) is almost three times as large as the largest 
constant of MAL. These thermal data reflect the fact 
that the arrangement of the molecules in the two struc- 
tures is fundamentally different. In the MAL struc- 
ture the molecular planes are inclined at an angle to 
one another, in the 5C1N structure the molecules are 
aligned parallel. The MAL structure is built up more 
loosely than lhe 5C1N structure. Thus our interpre- 
tation of the rigid-body thermal motions with the aid of 
the pseudo-forceconstant matrices not only seems to 
give reasonable results for each structure but also when 
we compare the two structures. 

I am indebted to Dr N. Brodherr and Dr J. Gass- 
mann, Mtinchen, for pointing out to me the coupling 
terms in the kinetic-energy matrix. 

APPENDIX 
Proof that the mean-square-amplitude matrix C 

is positive definite 

We refer to equation (2.19) in which the matrices 
{RA-~FR}q are Hermitian and positive definite be- 
cause they have the eigenvalues {A-1F}q. The sum of 
two Hermitian and positive definite matrices is also 
positive definite, see below. Hence ~{RA- 'FR}q is 

q 
positive definite. The congruence transformation with 
the matrix G does not change the signature of the ma- 
trix. Hence C has positive eigenvalues only. 

Let Ax and A2 be Hermitian and positive definite, 
then the sum matrix 

AI + A2 : A3 (A I) 

is also Hermitian. Hence a unitary matrix B exists 
which diagonalizes A3. From equation (A 1) we obtain 

BAIB + BAzB = I]A3B = A (diagonal). (A 2) 

Since B is unitary and Ax and A2 are positive definite, 
the transformed matrices on the left-hand side of 
equation (A2) have positive diagonal elements only. 
Hence each eigenvalue of A3 is the sum of two positive 
elements and is thus positive. 
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